Процессоры

Микропроцессор CPU (Central Processing Unit) выполняет все основные вычисления и обработку данных. Во всех PC-совместимых компьютерах используются процесссоры совместимые с архитектурой Intel х86, но выпускаются и проектируются они как самой Intel, так и сторонними компаниями AMD, Cyrix, IDT, Rise Technologies.

стандартные характеристики процессоров:

архитектура

Большинство современных процессоров для персональных компьютеров в общем основаны на той или иной версии циклического процесса последовательной обработки информации, изобретённого Джоном фон Нейманом.

С точки зрения программистов, под архитектурой процессора подразумевается его способность исполнять определенный набор машинных кодов. Большинство современных десктопных CPU относятся к семейству x86, или Intel-совместимых процессоров архитектуры IA32 (архитектура 32-битных процессоров Intel). Ее основа была заложена компанией Intel в процессоре i80386, однако в последующих поколениях процессоров она была дополнена и расширена как самой Intel (введены новые наборы команд MMX, SSE, SSE2 и SSE3), так и сторонними производителями (наборы команд EMMX, 3DNow! и Extended 3DNow!, разработанные компанией AMD). С точки зрения разработчиков компьютерного железа понятие «архитектура процессора» имеет несколько иной смысл. С их точки зрения, архитектура процессора отражает основные принципы внутренней организации конкретных семейств процессоров, способных выполнять определенные наборы команд: SSE, SSE2, SSE3, 3DNow, Enhanced 3DNow и т. д.). Основные типы общих архитектур: CISC, RISC, NetBurst, K7, K8, MultiRISC и их последующие модификации.

разрядность

Количество битов информации, которые может обработать процессор за один такт, характеризуется разрядностью внутренних регистров (ячеек памяти внутри процессора). Под разрядностью регистров понимается колличество паралельно соединенных между собой триггеров, из которых и состоят регистры. Чем больше это колличество, тем выше разрядность каждого отдельного регистра. Современные процессоры имеют разрядность 32 и 64 бита, реже 128 (в основном серверные варианты).

тип и колличество ядер

В рамках одной и той же архитектуры различные процессоры могут достаточно сильно отличаться друг от друга. И различия эти воплощаются в разнообразных процессорных ядрах, обладающих определенным набором строго обусловленных характеристик. Чаще всего эти отличия воплощаются в различных частотах системной шины (FSB), размерах кэша второго уровня, поддержке тех или иных новых систем команд или технологических процессах, по которым изготавливаются процессоры. Нередко смена ядра в одном и том же семействе процессоров влечет за собой замену процессорного разъема, из чего вытекают вопросы дальнейшей совместимости материнских плат. Однако в процессе совершенствования ядра, производителям приходится вносить в него незначительные изменения, которые не могут претендовать на «имя собственное». Такие изменения называются ревизиями ядра и, чаще всего, обозначаются цифробуквенными комбинациями. Однако в новых ревизиях одного и того же ядра могут встречаться достаточно заметные нововведения. Так, компания Intel ввела поддержку 64-битной архитектуры EM64T в отдельные процессоры семейства Pentium 4 именно в процессе изменения ревизии.


кэш память

Во всех современных процессорах имеется кэш (по-английски - cache) - массив сверхскоростной оперативной памяти, являющейся буфером между контроллером сравнительно медленной системной памяти и процессором. В этом буфере хранятся блоки данных, с которыми CPU работает в текущий момент, благодаря чему существенно уменьшается количество обращений процессора к чрезвычайно медленной (по сравнению со скоростью работы процессора) системной памяти. Тем самым заметно увеличивается общая производительность процессора.

При этом в современных процессорах кэш давно не является единым массивом памяти, как раньше, а разделен на несколько уровней. Наиболее быстрый, но относительно небольшой по объему кэш первого уровня (обозначаемый как L1), с которым работает ядро процессора, чаще всего делится на две половины - кэш инструкций и кэш данных. С кэшем L1 взаимодействует кэш второго уровня - L2, который, как правило, гораздо больше по объему и является смешанным, без разделения на кэш команд и кэш данных. Некоторые десктопные процессоры, по примеру серверных процессоров, также порой обзаводятся кэшем третьего уровня L3. Кэш L3 обычно еще больше по размеру, хотя и несколько медленнее, чем L2 (за счет того, что шина между L2 и L3 более узкая, чем шина между L1 и L2), однако его скорость, в любом случае, несоизмеримо выше, чем скорость системной памяти.

Кэш бывает двух типов: эксклюзивный и не эксклюзивный кэш. В первом случае информация в кэшах всех уровней четко разграничена - в каждом из них содержится исключительно оригинальная, тогда как в случае не эксклюзивного кэша информация может дублироваться на всех уровнях кэширования. Сегодня трудно сказать, какая из этих двух схем более правильная - и в той, и в другой имеются как минусы, так и плюсы. Эксклюзивная схема кэширования используется в процессорах AMD, тогда как не эксклюзивная - в процессорах Intel.


тип и частота процессорной шины

Процессорная (иначе - системная) шина, которую чаще всего называют FSB (Front Side Bus), представляет собой совокупность сигнальных линий, объединенных по своему назначению (данные, адреса, управление), которые имеют определенные электрические характеристики и протоколы передачи информации. Таким образом, FSB выступает в качестве магистрального канала между процессором (или процессорами) и всеми остальными устройствами в компьютере: памятью, видеокартой, жестким диском и так далее. Непосредственно к системной шине подключен только CPU, остальные устройства подсоединяются к ней через специальные контроллеры, сосредоточенные в основном в северном мосте набора системной логики (чипсета) материнской платы. Хотя могут быть и исключения - так, в процессорах AMD семейства К8 контроллер памяти интегрирован непосредственно в процессор, обеспечивая, тем самым, гораздо более эффективный интерфейс память-CPU, чем решения от Intel, сохраняющие верность классическим канонам организации внешнего интерфейса процессора. Основные параметры FSB некоторых процессоров приведены в табл.1:

Таблица 1

Процессорчастота FSB, МГцТип FSBТеоретическая пропускная способность FSB, Мб/с
Intel Pentium III100/133AGTL+800/1066
Intel Pentium 4100/133/200QPB3200/4266/6400
Intel Pentium D133/200QPB4266/6400
Intel Pentium 4 EE200/266QPB6400/8533
Intel Core133/166QPB4266/5333
Intel Core 2200/266QPB6400/8533
AMD Athlon100/133EV61600/2133
AMD Athlon XP133/166/200EV62133/2666/3200
AMD Sempron800HyperTransport6400
AMD Athlon 64800/1000HyperTransport6400/8000

Процессоры компании Intel используют системную шину QPB (Quad Pumped Bus), передающую данные четыре раза за такт, тогда как системная шина EV6 процессоров AMD Athlon и Athlon XP передает данные два раза за такт (Double Data Rate). В архитектуре AMD64, используемой компанией AMD в процессорах линеек Athlon 64/FX/Opteron, применен новый подход к организации интерфейса CPU - здесь вместо процессорной шины FSB и для сообщения с другими процессорами используются: высокоскоростная последовательная (пакетная) шина HyperTransport, построенная по схеме Peer-to-Peer (точка-точка), обеспечивающая высокую скорость обмена данными.


быстродействие процессора

Быстродействие процессора характеризуется его тактовой частотой, обычно измеряемой в мегагерцах (МГц). Она определяется параметрами кварцевого резонатора, представляющего собой кристалл кварца, заключенный в небольшой оловянный контейнер. Под воздействием электрического напряжения в кристалле кварца возникают колебания электрического тока, с частотой, определяемой формой и размером кристалла. Частота этого переменного тока и называется тактовой частотой. Микросхемы обычного компьютера работают на частоте нескольких миллионов герц. (герц - одно колебание в сек.). Быстродействие измеряется в мегагерцах, т.е. в миллионах циклов секунду. Наименьшей единицей измерения времени (квантом) для процессора является период тактовой частоты, или просто такт. На каждую операцию затрачивается минимум один такт. Например обмен данными с памятью процессор Pentium II выполняет за три такта плюс несколько циклов ожидания.


Cледует также особо отметить, что все современные процессоры поддрживают очень важную технологию суперскалярности, позволяющую паралельно выполнять независящие друг от друга потоки команд, а также, по возможности, менять очередность их выполнения для улучшения производительности.


Исторически сложилось, что на рынке десктоптых процессоров доминирующие позиции занимают две компании

Обе компании начиная в 2005 году перешли к массовому выпуску на рынок двуядерных процессоров. К этому времени классические одноядерные CPU практически полностью исчерпали резервы роста производительности за счет повышения рабочей частоты. Камнем преткновения стало не только слишком высокое тепловыделение процессоров, работающих на высоких частотах, но и проблемы с их стабильностью. Так что экстенсивный путь развития процессоров на ближайшие годы был заказан, и их производителям волей-неволей пришлось осваивать новый, интенсивный путь повышения производительности продукции. В настоящее время выделяются две ведущие архитектуры десктопных процессоров: Intel Core, AMD 64(K8).